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Abstract

Existing artificial neural network frameworks are vulnerable to a variety of adversarial attacks. Attackers

employ white box adversarial evasion attacks by exploiting model gradients with gradient ascent methods

to engineer data samples that the model will misclassify to the adversary’s specification. Stochastic

Gradient Switching is a novel defense approach, where each layer in a neural network is designed to be

an ensemble of unique layers, all fully connected to the previous layer ensemble. During inference, one

layer is randomly selected from each ensemble to be used for forward propagation, effectively selecting

one of many unique sub-networks upon each inference call. Stochastic gradient switching removes an

attacker’s ability to deterministically track model gradients, subduing evasion attack efforts that require

gradient ascent optimization.
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1. Introduction

As deep learning technologies power increasingly more services, associated security risks become more

critical to address. Adversarial machine learning is a branch of machine learning that exploits the

mathematics underlying deep learning systems in order to evade, explore, and/or poison machine

learning models [1,2]. Evasion attacks are the most common adversarial attack method due to their ease

of implementation and potential for being highly disruptive. During an evasion attack, the adversary tries

to evade a fully trained model by carefully engineering samples to be misclassified by the model. This

attack does not assume any influence over the training data. Evasion attacks have been demonstrated in

the context of autonomous vehicles where the adversary manipulates traffic signs to confuse the learning

model [3]. Research suggests that deep neural networks are susceptible to adversarial based evasion

attacks due to their high degree of nonlinearity as well as insufficient model averaging and regularization

[4]. In this paper we propose Stochastic Gradient Switching, a technique for defending against adversarial

evasion attacks.

2. Problem Statement

Adversarial attacks can be classified as being either black-box or white-box attacks. During a white-box

attack, an attacker has full access to the model, including the architecture, weights, and training

algorithm. During a black-box attack, the attacker only has the ability to use the model as an oracle,

observing model outputs by querying the model with inputs. If given the opportunity, white-box attacks are

easier to perform since the attacker has complete information about the model. For this reason, defense

techniques against white-box attacks also work to defend against black-box attacks. During a white-box

evasion attack, an adversary will select an input instance that he or she wants to be misclassified. The

attacker will perform a gradient ascent optimization algorithm to tune input features of a sample through

the use of a loss function that maximizes output of a desired class while minimizing the total change to

the input features [4,5]. In the context of computer vision, this process results in the creation of images

that are visibly indistinguishable from original samples but are capable of fooling the model through

careful exploitation of narrow gaps in decision boundaries. Our proposed framework removes an

adversary’s ability to perform evasion attacks.

3. Prior Art

Recent research has established various defenses against adversarial attacks. However, each defense

technique has considerable drawbacks and/or limitations. Some of the most prolific defense strategies

include; adversarial training, gradient hiding, and feature squeezing.
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Adversarial training is the process of generating adversarial samples for a model then including those

samples in the training data set to develop a second, more robust model [4,6,7,8]. While this can help to

an extent, the problem is that for highly non-linear tasks, such as computer vision, new adversarial

samples will inherently exist for the second model that did not exist for the first [9,10,11]. These gaps are

still left vulnerable for an attacker to exploit.

Gradient hiding is the method of using a non-gradient based machine learning framework such as random

forest or k-nearest neighbors [11]. The problem with this is that it renders deep neural networks unusable.

Many problems such as computer vision and natural language processing are best handled by one of the

many architecture designs that deep neural networks have to offer. Additionally, non-gradient based

machine learning models can be approximated by a surrogate deep neural network model. Research

shows that adversarial examples found on the surrogate model are often adversarial on the original

non-gradient based model as well [10].

Feature squeezing is a technique that involves reducing the complexity of an input feature space [12,13].

This is done either by binning values into a lower resolution or by converting the input feature space into a

lower dimensional latent space. The largest drawback of feature squeezing is that it often comes at the

expense of degraded model performance and it doesn’t remove all adversarial examples.

4. Approach

Architecture

A conventional neural network consists of a series of layers, each layer

containing perceptrons that make computations based upon learned

weights associated with previous layers (figure 1). The weights are trained

via a backpropagation gradient descent algorithm that minimizes a loss

function over a training data set. When an adversary has complete

knowledge of the weights and connections of the network, they can exploit

the network gradients to craft adversarial samples that produce desired

outputs.

To address the challenges and shortcomings identified in the previous

sections, Stochastic Gradient Switching removes the determinism of a

neural network’s gradients in order to eliminate an attackers ability to exploit

Figure 1
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Figure 2 Figure 3

them. Our approach is to replace each hidden layer of a conventional neural network with an ensemble of

layers, each layer being fully connected to the previous ensemble of layers. An example is shown in

figure 2, where each hidden layer is replaced by an ensemble of 2 layers that run in parallel. Upon

inference, a single layer is randomly selected from each layer ensemble as shown in figure 3. Forward

propagation is then computed as in a conventional neural network and an output is returned. In the

illustrated example, there are 2 hidden layer ensembles, each containing 2 individual layers. This

effectively creates 4 sub-networks, each with different gradients and an equal chance to be selected upon

inference. In general, a network with n layer ensembles and m layers in each ensemble will have mn

sub-networks with unique gradients. This basic architecture can be extended to more complex neural

network schemas such as convolutional neural networks or recurrent neural networks simply by

expanding each hidden layer across an additional dimension to create ensemble layers.

Model Training

For smaller models, Neural Networks with Stochastic Gradient Switching can be trained in parallel as a

collection of sub-networks with shared weights. For larger models and limited computational resources, a

drop-out style training algorithm can be implemented to train one sub-network at a time. For Stochastic

Gradient Switching to be an effective defense strategy against white-box evasion attacks, each

sub-network must maintain a unique set of gradients from the other sub-networks. This is achieved by

applying a regularization term to the loss function that measures the vector distances between each layer

within an ensemble. Minimizing this loss term will encourage the network to find solutions that keep
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sub-networks nearly orthogonal to each other. The weight of the vector distance regularization term within

the loss function must be tuned as a hyperparameter to balance sub-network orthogonality with high

training accuracy. Orthogonal layer spaces result in sub-networks that transform inputs through unique

feature space bases. Having unique feature spaces across sub-networks decreases overlap in

adversarial example feature state space. For this reason, an adversarial example trained over one

sub-network is unlikely to be an adversarial example in a different sub-network.

5. Research

Mindboard’s research goals are to investigate and quantify the effectiveness of Stochastic Gradient

Switching in defending against adversarial evasion attacks. This investigation will extend to a range of

model architectures including Feedforward Neural Networks, Convolutional Neural Networks, and

Recurrent Neural Networks. Mindboard seeks to explore the companionship of Stochastic Gradient

Switching with other adversarial defense techniques and consider usage for defense against other

adversarial attack types such as exploratory and poisoning attacks. We will pursue the development of

Stochastic Gradient Switching libraries to be compatible with machine learning libraries such as

TensorFlow, Keras, and/or PyTorch.

6. Summary

Stochastic Gradient Switching is a novel machine learning technique with the potential to have a large

impact on how we protect ourselves against adversarial attacks. With machine learning services

beginning to occupy critical spaces such as military operations, law enforcement, and medical practices,

secure machine learning pipelines are extremely important. Mindboard seeks to contribute to the

adversarial machine learning field through the research and development of robust neural networks with

Stochastic Gradient Switching.
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